Lkb1 maintains Treg cell lineage identity
نویسندگان
چکیده
منابع مشابه
Lkb1 maintains Treg cell lineage identity
Regulatory T (Treg) cells are a distinct T-cell lineage characterized by sustained Foxp3 expression and potent suppressor function, but the upstream dominant factors that preserve Treg lineage-specific features are mostly unknown. Here, we show that Lkb1 maintains Treg cell lineage identity by stabilizing Foxp3 expression and enforcing suppressor function. Upon T-cell receptor (TCR) stimulation...
متن کاملCbx4 maintains the epithelial lineage identity and cell proliferation in the developing stratified epithelium
During development, multipotent progenitor cells establish lineage-specific programmers of gene activation and silencing underlying their differentiation into specialized cell types. We show that the Polycomb component Cbx4 serves as a critical determinant that maintains the epithelial identity in the developing epidermis by repressing nonepidermal gene expression programs. Cbx4 ablation in mic...
متن کاملHow Sox2 maintains neural stem cell identity.
The transcription factor Sox2 [SRY (sex-determining region Y)-box 2] is expressed at the earliest developmental stages in the nervous system and functions as a marker protein for neural development. Sox2 is found in embryonic neural stem cells as well as in virtually all adult neural stem cells of the subventricular region and the subgranular zone of the hippocampus. Gain-of-function and loss-o...
متن کاملLKB1 and AMPK differentially regulate pancreatic b-cell identity
Fully differentiated pancreatic b cells are essential for normal glucose homeostasis in mammals. Dedifferentiation of these cells has been suggested to occur in type 2 diabetes, impairing insulin production. Since chronic fuel excess (“glucotoxicity”) is implicated in this process, we sought here to identify the potential roles in b-cell identity of the tumor suppressor liver kinase B1 (LKB1/ST...
متن کاملT cell lineage commitment: identity and renunciation.
Precursors undertaking T cell development shed their access to other pathways in a sequential process that begins before entry into the thymus and continues through many cell cycles afterward. This process involves three levels of regulatory change, in which the cells' intrinsic transcriptional regulatory factors, expression of signaling receptors (e.g., Notch1), and expression of distinct homi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nature Communications
سال: 2017
ISSN: 2041-1723
DOI: 10.1038/ncomms15876